
Performance Analysis of BSTs in System Software∗

Ben Pfaff
Stanford University

Department of Computer Science
blp@cs.stanford.edu

Abstract

Binary search tree (BST) based data structures, such
as AVL trees, red-black trees, and splay trees, are of-
ten used in system software, such as operating system
kernels. Choosing the right kind of tree can impact
performance significantly, but the literature offers few
empirical studies for guidance. We compare 20 BST
variants using three experiments in real-world scenar-
ios with real and artificial workloads. The results in-
dicate that when input is expected to be randomly or-
dered with occasional runs of sorted order, red-black
trees are preferred; when insertions often occur in
sorted order, AVL trees excel for later random access,
whereas splay trees perform best for later sequential
or clustered access. For node representations, use of
parent pointers is shown to be the fastest choice, with
threaded nodes a close second choice that saves mem-
ory; nodes without parent pointers or threads suffer
when traversal and modification are combined; main-
taining a in-order doubly linked list is advantageous
when traversal is very common; and right-threaded
nodes perform poorly.

1 Introduction

OS kernels and other system software often use bi-
nary search tree (BST) based data structures such
as AVL trees, red-black trees, or splay trees. Choos-
ing the right tree and node representation can impact
the performance of code that uses these data struc-
tures. Surprisingly, there has been little empirical
study of the relationship between the algorithms used
for managing BST-based data structures and perfor-
mance characteristics in real systems [1, 2, 3]. This
paper attempts to fill this gap by thoroughly analyz-
ing the performance of 20 different variants of binary
search trees under real and artificial workloads.

We present three experiments. The first two exam-
ine data structures used in kernels in memory man-

∗An extended abstract of this paper appeared in the pro-
ceedings of SIGMETRICS/Performance 2004.

agement and networking, and the third analyzes a
part of a source code cross-referencing tool. In each
case, some test workloads are drawn from real-world
situations, and some reflect worst- and best-case in-
put order for BSTs.

We compare four variants on the BST data struc-
ture: unbalanced BSTs, AVL trees, red-black trees,
and splay trees. The results show that each should be
preferred in a different situation. Unbalanced BSTs
are best when randomly ordered input can be relied
upon; if random ordering is the norm but occasional
runs of sorted order are expected, then red-black trees
should be chosen. On the other hand, if insertions
often occur in a sorted order, AVL trees excel when
later accesses tend to be random, and splay trees per-
form best when later accesses are sequential or clus-
tered.

For each BST data structure variant, we compare
five different node representations: plain, with par-
ent pointers, threaded, right-threaded, and with an
in-order linked list. Combining traversal and mod-
ification in a BST with plain nodes requires extra
searches, although there are fewer fields to update.
Parent pointers are generally fastest, as long as the
cost of an additional pointer field per node is not
important. Threaded representations are almost as
fast as parent pointers, but require less space. Right-
threaded representations fare poorly in all of our ex-
periments, as do in-order linked lists.

The remainder of this paper is organized as follows.
Section 2 describes the data structures and node rep-
resentations being compared and section 3 states our
hypotheses for their performance. Section 4 describes
the experimental platform used for comparisons. Sec-
tion 5 presents the experiments and discusses their
results individually, while section 6 discusses the re-
sults as a whole. Section 7 covers related work, and
section 8 draws overall conclusions.

2 BST Variants

This paper focuses on two dimensions within the BST
design space. The first dimension under considera-
tion is the choice of data structure; the second, choice
of BST node representation.

2.1 Data Structure

In an ordinary, unbalanced BST, insertion of data
items in a pathological order, such as sorted order,
causes BST performance to drop from O(lg n) to
O(n) per operation in a n-node tree [4, 5, 6].

One solution is a balanced tree, which uses balanc-
ing rules to bound tree height to O(lg n). The most
popular balanced trees are AVL trees and red-black
trees, which limit the height of an n-node tree to no
more than 1.4405 lg(n + 2) − 0.3277 and 2 lg(n + 1),
respectively [7, 8, 9, 10].

Another solution is a self-adjusting tree, that
is, one that dynamically moves frequently accessed
nodes near the tree’s root. The most popular self-
adjusting tree structure is the splay tree, which ro-
tates or “splays” each node to the root at time of
access [11]. Splay tree amortized performance has
been shown to be optimal in several important re-
spects [11, 12].

2.2 Node Representation

At a minimum, a BST node contains a data item
and left and right child pointers. Efficient traversal
of such a ordinary BST requires maintenance of a
stack of nodes to revisit. Most kinds of tree modifi-
cation during traversal also require that the stack be
regenerated with an O(lg n)-cost search operation.

One obvious way to solve these problems is to add a
parent pointer to the node, yielding a tree with parent
pointers. Another simple technique is to add a pre-
decessor and a successor pointer to each node, main-
taining a doubly linked list of in-order nodes; we will
call this a linked list tree for short.

Alternatively, each right child pointer that would
otherwise be null can be used to point to the node’s
in-order successor, and similarly for left child point-
ers and node predecessors. These successor and pre-
decessor pointers are called threads, and a tree with
threads is a threaded tree [13]. Figure 1(a) shows a
threaded BST, with threads drawn as dotted lines.

When only successors are of interest, not predeces-
sors, it is possible to thread right child pointers only,
producing a right-threaded tree in which finding the
successor of a node is fast, but finding a predecessor

(a)

1

2

3

4

5

6

7

8

9

(b)

1

2

3

4

5

6

7

8

9

Figure 1: (a) A threaded BST, with threads drawn
as dotted lines. (b) A right-threaded BST.

requires a search starting from the root. Figure 1(b)
shows a right-threaded BST.

3 Performance Hypotheses

Before describing the experiments, we will take a brief
look at the qualitative performance we expect from
operations on each tree variant.

3.1 Data Structure

When data items are inserted in random order, any
BST-based data structure should provide acceptable
behavior. There is no need for complex rebalancing
algorithms, because ordinary BSTs will produce ac-
ceptably balanced trees with high likelihood. Thus,
for random insertions, data structures with the least
extra overhead (above ordinary BSTs) should yield
the best performance. The red-black balancing rule is
more permissive than the AVL balancing rule, result-
ing in less superfluous rebalancing, so red-black trees
should perform better for random insertions. We sus-
pect that splay trees will be slower than either AVL
or red-black trees on random insertions because they
splay the inserted node to the root on every inser-
tion, whereas the other balanced trees only perform
balancing as necessary.

On the other hand, when data items are inserted
in sorted order, ordinary BST behavior should be the
slowest by far. In such a case, the stricter the balanc-
ing rule, the shorter in height the tree that should be
produced. We therefore expect to see that for patho-
logical input, AVL trees should perform better than

2

red-black trees. Known linear performance for se-
quential access patterns in splay trees [12] suggests
that splay trees should perform well, but it is diffi-
cult to predict how they will do relative to AVL and
red-black trees.

Some data structures require extra memory on top
of that required by ordinary BSTs: AVL trees require
2 extra bits per node and red-black trees require 1
extra bit. Due to padding, these bits actually add 4
bytes to each node in libavl. They could be absorbed
into other fields, but not in portable C code and at
a performance cost. Splay trees do not require extra
memory.

3.2 Node Representation

To distinguish threads from child pointers, threaded
nodes require an extra check for each link followed,
costing extra time. This penalty could be significant
because following links is such a common operation in
examining and manipulating binary trees. Following
a link from a right-threaded node is the same as plain
nodes on the left side, and the same as threaded nodes
on the right side.

Ideally, traversal operations, for finding in-order
successors and predecessors, should achieve O(1) per-
formance. The actual implementation and perfor-
mance of these functions is a key difference between
node representations. Based on the complexity of op-
eration in the normal case, the table below lists them
in suspected order of fastest to slowest:

linked list O(1) traversal by a single branchless
pointer dereference.

threads O(1) traversal by following a single pointer
upward or a series downward.

right threads O(1) successor operation, as for
threaded nodes, but finding a node’s predeces-
sor requires an O(lg n) search from the tree root
when it starts from a node with no left child.

parent pointers O(1) traversal by following O(1)
pointers upward or downward in the tree.

plain O(1) traversal by maintaining an explicit
stack. Performance degrades to O(lg n) if the
tree is modified.

Rotation operations, used to maintain balance in
balanced trees, suffer overhead under many node rep-
resentations. With parent pointers, each rotation
requires 3 extra pointer assignments, doubling the
number of assignments. In threaded trees, each rota-
tion requires 1 or 2 extra assignments and a two-way

branch, similar to following links. In right-threaded
trees, each rotation requires a two-way branch and
sometimes 1 extra assignment.

Node representations also have different mem-
ory requirements. Parent pointers add a single
pointer field to each node; linked list nodes add two.
Threaded nodes add 2 “tag” bits to each node used
to distinguish threads from child pointers, and right-
threaded similarly nodes add 1 tag bit. In AVL and
red-black trees, tag bits can be absorbed into other-
wise unused padding at no extra cost.

4 Experimental Platform

If we consider ordinary BSTs, AVL trees, red-black
trees, and splay trees, for each of the five kinds of tree
nodes described above, there are 20 different ways to
implement binary search tree-based data structures.
To test 12 of the 20 variations, we used GNU libavl
2.0.1, a free software library in portable ANSI/ISO
C [14]. GNU libavl does not currently include splay
trees or linked list node representations, so the 8 re-
maining variants were implemented for this paper.

All of the libavl tree implementations implement
the same interface, summarized in Table 1. The inter-
face divides into two categories of functionality: “set”
functions and “traverser” functions. The set interface
manipulates trees in terms of a set abstraction, that
is, as an unordered collection of unique items.1. The
probe function combines search and insertion and the
insert function inserts a new item into a tree when
it is known not to contain an item with an equal key.
Function delete removes an item. The find func-
tion searches for an item whose key equals a given
target.

The traverser interface allows a program to iterate
through the items in a tree in sorted order. Each tra-
verser tracks the position of a node in the tree, with
the guarantee that a traverser remains valid across
any series of tree modifications as long as its own
node is not deleted. A traverser may also have a null
current position. Functions that create traversers in-
clude t first, to create a traverser with the mini-
mum value in the tree as its current position; t last,
for the maximum value; t find, for a value equal to a
target; and t insert, to insert a new item and create
a traverser at its position. Operations on traversers
include t next and t prev, which move a traverser
to the next or previous node, respectively, in sorted
order and return its data.

1libavl does not directly support trees that contain dupli-
cates

3

find(x): searches for an item that equals x
insert(x): inserts x (for use when x is known not to

be in the tree)
probe(x): combines search and insertion: searches

for x and inserts it if not found
delete(x): deletes an item equal to x if one exists in

the tree

t first(t): positions traverser t at the minimum
item in the tree

t last(t): positions traverser t at the maximum
item in the tree

t find(t, x): positions traverser t at an item equal
to x or at the null position if none exists

t insert(t, x): positions traverser t at an item equal
to x, inserting x if none exists

t next(t): advances traverser t to the next item in
in-order

t prev(t): advances traverser t to the previous item
in in-order

Table 1: Summary of important libavl functions.

5 Experiments

This section discusses three experiments carried out
to test data structure performance. Each experiment
takes advantage of a different property of BSTs. Two
of the three experiments are simulations of actual uses
of balanced binary trees within the Linux kernel, ver-
sion 2.4.20. All three are intended to represent sub-
stantial real-world uses for BST-based structures.

The primary platform for the experiment, for which
times are reported, was a Compaq Armada M700
with 576 MB RAM and a Mobile Pentium III proces-
sor at 500 MHz with 256 kB cache, running Debian
GNU/Linux “unstable” with the Linux 2.4.22 kernel.
The compiler used was GCC 2.95.4 with flags -O3
-DNDEBUG.

The experiments were also run on other x86-based
machines, including Pentium III and Pentium IV
desktop machines, and under other versions of GCC,
including 3.2.2 and 3.3. The differences between pro-
cessors and compiler versions were minor. The one
significant difference that did appear is described as
part of its experimental results, in section 5.2.1.

5.1 Virtual Memory Areas

Each process in a Unix-like kernel has a number of
virtual memory areas (VMAs). At a minimum, a
statically linked binary has one VMA for each of its
code, data, and stack segments. Dynamically linked

binaries also have code and data VMAs for each dy-
namic library. Processes can create an arbitrary num-
ber of VMAs, up to the limit imposed by the oper-
ating system or machine architecture, by mapping
disk files into memory with the mmap system call. A
complementary system call, munmap, can partially or
entirely eliminate existing VMAs [15].

Since VMAs vary in size over several orders of mag-
nitude, from 4 kB to over 1 GB, conventional hash
tables cannot keep track of them efficiently. Hash
tables also do not efficiently support range queries
needed to determine which existing VMAs overlap
the range requested by a mmap or munmap call.

BST-based data structures, on the other hand,
have both these properties, so many kernels use BSTs
for keeping track of VMAs: Linux before 2.4.10 used
AVL trees, OpenBSD and later versions of Linux use
red-black trees, FreeBSD uses splay trees, and so does
Windows NT for its VMA equivalents [16].

When BSTs store intervals that can overlap, ef-
ficient performance requires the tree structure to
be augmented with an extra field, as in interval
trees [17]. VMAs do not overlap, so this is unnec-
essary as long as care is taken during insertion oper-
ations. Interval trees are not used here, nor are they
used by any of the kernels mentioned above.

The first experiment simulates VMA activity dur-
ing program execution. Modifications to VMA ta-
bles by mmap and munmap calls are simulated by tree
modifications. Test sequences were drawn from four
sources, primarily by instrumenting the behavior of
real programs:

• Mozilla 1.0 [18] over the course of a brief brows-
ing session. In total, mmap is called 1,459 times
and munmap 1,264 times. At the peak there are
108 VMAs, with an average of 98.

• VMware GSX Server 2.0.1 x86 virtual machine
monitor [19] over the boot sequence and brief
usage of a Debian GNU/Linux virtual machine.
VMware GSX Server divides itself into several
processes; behavior of only the most VMA-
intensive of these is simulated. In total, mmap
and munmap are each called 2,233 times. At peak
there are 2,233 VMAs, with an average of 1,117.

• Squid web cache 2.4.STABLE4 running under
User-Mode Linux 2.4.18.48, which relies on mmap
for simulating virtual memory. In total, mmap
is called 1,278 times and munmap 1,403 times.
There are at most 735 VMAs at any time, 400
on average.

• A synthetic test set consisting of 1,024 mmap calls
followed by 1,024 munmap calls, all of which begin

4

(a)
0 544 1088 1632 2176 2720

Operations

A
dd

re
ss

 S
pa

ce

(b)
0 892 1784 2676 3568 4460

Operations

A
dd

re
ss

 S
pa

ce

(c)
0 528 1056 1584 2112 2640

Operations

A
dd

re
ss

 S
pa

ce

(d)
0 409 818 1227 1636 2045

Operations

A
dd

re
ss

 S
pa

ce

Figure 2: Call sequences in (a) Mozilla 1.0, (b) VMware GSX Server 2.0.1, (c) squid running under User-
Mode Linux 2.4.18.48, and (d) random test sets. Part (b) omits one mmap-munmap pair for memory region
0x20000000 to 0x30000000 and (c) omits address space gaps; the others are complete.

at random page-aligned locations and continue
for a random number of pages. This is unrealis-
tic, provided as an example of the best case for
an ordinary BST.

Figure 2 depicts the sequence of calls in each test
set. Notably, the VMware GSX Server test set is
close to being a worst case for unbalanced BSTs be-
cause of its sequence of one-page mmaps at sequential
virtual addresses. The Linux kernel (and the simu-
lation) never merges VMAs that refer to files, even
when they map sequential blocks within the same file,
so each of these calls creates a new VMA. On the
other hand, the random test set is the best case for
unbalanced BSTs.

The function called most often in the VMA sim-
ulation, 20,110 times among the four test sets, is
t equal range, a function implemented for this sim-
ulation that finds the range of tree nodes that overlap
a given range as a pair of traversers. Other functions
called often are t next, 11,051 times; insert, 5,994
times; delete, 5,044 times; and t prev, 4,460 times.
Use of other tree functions is insignificant.

Table 2 shows the time, in seconds, to run 1,000
iterations of each test set using each of the 20 tree
types, and the number of comparisons performed in
a single run of each.

5.1.1 Real-World Data Sets

The Mozilla, VMware, and Squid data sets are con-
sidered “real world” data sets because they are drawn
directly from real programs.

Splay trees shine in the three real-world tests.
They beat all of the other tree types by a wide mar-
gin, bettering the best of the competition by 23% to
40% each time. The reason lies in the test sets’ high
locality of reference, as shown in Figure 2, along with
the splay tree’s ability to keep frequently used nodes
near the top of the tree. This is demonstrated by the

comparison count numbers: in each case, the next
larger comparison count was 2.0 to 3.4 times that of
the splay tree. The tendency of the VMware and
Squid test sets toward sequential access is also a fac-
tor, since such access patterns have been proved to
take linear time in splay trees [12].

As expected, ordinary BSTs are slower than any
other data structure for the real-world tests, by
more than an order of magnitude in the pathological
VMware test set. The Mozilla test with plain node
representation, where ordinary BSTs are the fastest
of the four, is exceptional because of a detail of the
libavl implementation, in that it uses a stack of fixed
maximum size for in-order traversal in plain BSTs.2

When traversal encounters a tree branch deep enough
to overflow the stack, it rebalances the entire tree, re-
ducing the tree’s height to the minimum possible for
its number of nodes. Insertion, deletion, and search
operations on the resulting tree are then, initially,
guaranteed to run in O(lg n) time. In each run of
the Mozilla and Squid test sets such forced rebalanc-
ing occurs three times for plain BSTs, and once in
the VMware test set. (Plain splay trees have similar
fixed-sized stacks for traversal, but the test does not
trigger it.)

In these data sets, the AVL tree implementations
were consistently faster than red-black trees, by up
to 20%. Table 2 shows that there is a correspond-
ing 12% to 32% increase in the number of compar-
isons from AVL to red-black, which suggests that the
stricter AVL balancing rule may be responsible. Fur-
ther investigation shows that although the average
internal path length for the red-black trees is only
about 3% longer than for the AVL trees, the path
of maximum length is 16% to 29% longer in both
test sets, as shown in table 3. The conclusion is that
although both AVL and red-black trees globally bal-
ance the trees about as well, the AVL balancing rule

2The maximum size is 32 entries by default.

5

time (seconds) comparison count
test set representation BST AVL RB splay BST AVL RB splay
Mozilla plain 4.49 4.81 5.32 2.71 71,864 62,523 79,481 23,398

parents 15.67 3.65 3.78 2.63 635,957 54,842 68,942 22,284
threads 16.77 3.93 3.95 2.67 635,957 54,842 68,942 22,284
right threads 16.91 4.07 4.20 2.68 634,844 53,962 69,357 22,241
linked list 16.31 3.64 4.35 2.74 559,062 46,904 69,232 22,240

VMware plain 208.00* 8.72 10.59 3.77 7,503,740 137,081 193,984 32,190
parents 447.40* 6.31 7.32 3.62 14,865,389 122,087 175,861 35,733
threads 445.80* 6.91 8.51 3.64 14,865,389 122,087 175,861 29,758
right threads 446.40* 6.88 8.59 3.51 14,872,042 122,076 175,886 22,725
linked list 472.00* 7.35 8.60 3.45 14,865,389 122,087 175,861 29,831

Squid plain 7.34 4.41 4.67 2.84 250,883 67,079 77,836 30,086
parents 12.52 3.69 3.80 2.64 487,818 62,467 72,867 29,338
threads 13.44 3.92 4.18 2.70 487,818 62,467 72,867 28,156
right threads 14.46 4.17 4.27 2.86 511,903 63,189 71,629 30,199
linked list 13.13 4.02 4.19 2.65 487,818 62,467 72,867 28,173

random plain 2.83 2.81 2.86 3.43 37,396 34,090 34,176 44,438
parents 1.63 1.67 1.64 1.94 28,123 25,958 25,983 33,036
threads 1.64 1.74 1.68 2.02 28,123 25,958 25,983 33,036
right threads 1.92 1.96 1.93 2.22 30,598 28,438 28,393 34,672
linked list 1.46 1.54 1.51 1.74 27,845 25,808 25,605 31,965

Table 2: Time, in seconds, for 1,000 runs of each VMA simulation test set, and number of comparisons
during each run. *Estimated based on 10 runs.

leads to better local balancing in the important places
for test sets like these with strong locality. The splay
tree results for maximum path length are deceptive
because a splay operation on a node roughly halves
the path length to every node along its access path,
so that only nodes accessed infrequently will lie along
the path of maximum length.

Considering AVL and red-black tree implementa-
tions for the real-world test sets, in all cases plain
representations were the slowest and parent pointer
representations were the fastest. Given the experi-
mental operation mix, there are two causes for this
behavior. First, the plain representation is slow be-
cause insertions and deletions invalidate the stacks re-
quired for traversal with plain nodes, forcing t next
to perform an extra search; the right-threaded repre-
sentation is slow because of the use of t prev. Sec-
ond, parent pointers are faster than threaded repre-
sentations because distinguishing threads from ordi-
nary child pointers requires an extra step.

5.1.2 Random Data Set

For the random data set, all of the implementations
were clustered within a relatively small range of about
2.3 times variation. Within each node representation,
speed tended to be ordered from fastest to slowest as

ordinary BST, red-black tree, AVL tree, splay tree.
Intuitively, the fastest implementations should be the
ones that perform the least extra work, because ran-
dom order is ideal for an ordinary BST. To verify
this, we must have some means to measure “extra
work”; because the tested balanced trees all rebal-
ance in terms of rotations, counting rotations is one
reasonable way. For the random data set, ordinary
BSTs make no rotations, red-black trees make 209,
AVL trees make 267, and splay trees make 2,678.3

This ordering neatly coincides with observed perfor-
mance tendencies, further explaining why splay trees
are consistently separated from the other tree types
by a relatively wide gap.

Along the other dimension, speed tended to be ar-
ranged from fastest to slowest in the order of linked
list nodes, nodes with parent pointers, threaded
nodes, right-threaded nodes, and plain nodes, indi-
cating that performance favors representations that
make in-order traversal speedy.

Splay trees consistently performed worst, and re-
quired the most comparisons, within each node rep-
resentation category in the random test. This reflects

3Number of rotations is generally independent of node rep-
resentation. Numbers for right-threaded trees do differ slightly
due to a specialized deletion algorithm.

6

test set AVL red-black splay

Mozilla 468 : 6.8 485 : 8.1 1,227 : 25.6
VMware 9,471 : 9.2 9,723 : 13.1 426,378 : 572.3
Squid 2,903 : 8.5 3,000 : 10.7 20,196 : 100.2

Table 3: Average internal path length and average
maximum path length, respectively, for each kind of
tree in the real-world test sets.

the work required to splay each node accessed to the
root of the tree, in the expectation that it would soon
be accessed again. This effort is wasted for the ran-
dom set because of its lack of locality.

5.1.3 Optimization

One feature missing from libavl is the ability to di-
rectly delete the node referenced by a traverser. Such
an operation can avoid a search from the root to
the node to delete and thereby reduces deletion time
to O(1). For the purposes of this paper such a
t delete function was written for implementations
with threads and parent pointers. Plain representa-
tions are unlikely to benefit because most changes in-
validate all traverser stacks, and implementation for
right-threaded representations appears to always re-
quire a search, so t delete was not implemented for
those representations.

Table 4 shows the timings when t delete is sub-
stituted for delete where appropriate. Up to 16%
improvement was observed for the balanced tree im-
plementations, even larger for the unbalanced trees.
Based on these results, we suggest that future ver-
sions of libavl should include a t delete function.

A related function insert before, for O(1) inser-
tion with a known insertion point, was also imple-
mented and found to give this experiment no notice-
able performance benefit, so detailed analysis is omit-
ted.

5.2 Internet Peer Cache

RFC 791 [20] requires that each IP packet sent by an
internet host be stamped with a 16-bit identification
field that “must be unique for that source-destination
pair and protocol for the time the datagram will be
active in the internet system.” Most TCP/IP imple-
mentations ensure this by maintaining a counter for
each host they contact, incrementing a host’s counter
once for every packet transmitted to it.

The Linux kernel keeps track of identification data
using an AVL tree indexed by peer IP address.4 As

4Although RFC 791 allows it, Linux does not maintain sep-

test set representation BST AVL RB splay
Mozilla parents 11.12 3.25 3.17 2.53

threads 11.91 3.52 3.30 2.67
VMware parents 331.00* 5.42 6.35 3.22

threads 325.00* 5.96 7.42 3.55
Squid parents 11.22 3.54 3.62 2.53

threads 12.10 3.78 3.99 2.70
random parents 1.60 1.64 1.62 1.90

threads 1.61 1.71 1.65 2.02

Table 4: Time, in seconds, for 1,000 runs of VMA
simulation test sets optimized with t delete. *Esti-
mated based on 10 runs.

a comment in the source notes: [21]

Such an implementation has been chosen
not just for fun. It’s a way to prevent easy
and efficient DoS attacks by creating hash
collisions. A huge amount of long living
nodes in a single hash slot would signifi-
cantly delay lookups. . .

Techniques such as universal hashing [22] can make
hash collision attacks significantly more difficult. On
the other hand, balanced tree techniques make them
impossible, so they are a way to dodge an entire class
of potential problems.

The peer AVL tree is used as a second-level cache
only. The first time a packet is sent to a given host, a
node with its IP address is inserted into the tree. A
direct pointer to this node is also put into the route
cache, which is the first-level cache. As long as the
host’s route remains cached, the AVL tree is not con-
sulted again for that host. If the route is dropped
from the cache (generally due to inactivity), and later
added back in, the AVL tree is searched a second
time. If, on the other hand, the route is dropped
and remains inactive, sometime later the host’s peer
cache AVL tree entry will be dropped. Peer cache
entries not recently used can also be dropped if the
cache grows too much, but entries are never dropped
while in use in the route cache.

The simulation attempts to reproduce the most im-
portant features of the peer cache. The route cache
is modeled heuristically, not directly. All other fea-
tures described above are directly reproduced. Two
scenarios are modeled:

• Web server under normal load. A new host with
a randomly selected IP address makes its first
request every 10 ms to 1.5 s, with a mean of

arate identification counters for TCP and UDP protocols.

7

test set representation BST AVL RB splay
normal plain 4.74 5.10 5.06 7.70

parents 3.94 4.07 3.78 7.19
threads 3.99 4.45 4.17 13.25
right threads 5.52 5.71 5.64 8.29
linked list 4.93 5.40 5.25 8.41

attack plain * 3.76 4.32 4.14
parents * 2.65 2.92 3.31
threads * 2.97 3.37 7.77
right threads * 4.04 4.77 4.62
linked list * 4.10 4.46 4.78

Table 5: Times, in seconds, for 500 and 5 runs, re-
spectively, of the normal and attack scenario simula-
tions. *Greater than 60 seconds for a single run.

38 ms. Each currently connected host makes a
request every 10 ms to 10 min, with a mean of
30 s, and hosts make a mean of 9 requests each.

• Attack. A new “host” with a IP address consecu-
tively greater than the previous makes a request
every 10 ms for 1,000 s. “Hosts” otherwise be-
have as above, in order to ensure that they stay
cached for some time.

In each scenario, new peers continue to arrive for
1,000 s simulated time, and then the simulation con-
tinues with no new peers until the cache becomes
empty. As a result, insertion (insert or t insert)
and deletion (delete or t delete) functions are
called the same number of times for each test set,
2,691 times each for the normal web server test set
and 137,146 times for the attack test set. Due to the
read-write locks used by the kernel implementation,
a find operation is performed before every insertion.
Along with the searches performed to look up peer
cache entries expired from the route cache, this makes
find the most-used function at 3,884 calls in the nor-
mal test set and 147,942 in the attack test set. Use
of other libavl functions is unimportant.

Table 5 shows the time required for multiple sim-
ulated runs of each test set using each tree type.
Unbalanced binary trees were not simulated in the
attack scenario because of pathological behavior of
the algorithm in that case. Ordinary BSTs and splay
trees are included in the table, but would not be suit-
able choices in this scenario because they do not pro-
vide guaranteed performance.

5.2.1 Normal Data Set

Within the normal data set, if we sort the represen-
tations by speed within each type of tree, in three

of four cases the order is the same. From fastest to
slowest, this order is: parent pointers, threads, plain,
linked list, and right threads. The speed of parent
pointer and thread representations reflects the abil-
ity to use t delete for O(1) deletion. Among the
other representations, plain is fastest because it is not
hampered by manipulation of a linked list or right
threads, which do not provide any benefits for this
experiment.

Splay trees are the exception, for which the
threaded representation is by far the slowest. Af-
ter some investigation, the problem turned out to be
an unexpected artifact of the libavl implementation
of threaded splay trees. In particular, the routine
that implements splaying moves up the splay tree
to the root using a well-known algorithm for find-
ing the parent of a threaded node [13, exercise 19].
This algorithm is O(1) on average for randomly se-
lected nodes in a threaded tree, and its wide use in
libavl’s threaded tree implementations shows that it
has reasonable performance in most cases. Unfortu-
nately, its pattern of use for splaying coupled with the
typical structure of a splay tree leads to poor perfor-
mance. (The same effect is visible, to a lesser degree,
in the threaded splay tree performance shown earlier
in Table 2.)

To fix this performance anomaly, the implementa-
tion of threaded splay trees was modified to main-
tain a stack of parent pointers for splaying purposes,
instead of depending on the algorithm for finding a
node’s parent. The revised code brought the threaded
splay tree runtime down to 8.11 s for the normal case
and 4.47 s for the attack case, which are much more
competitive times. The revised performance is still
not entirely consonant with the other threaded trees,
probably due to the need to maintain the stack. (Sim-
ilar improvement was found when the revised code
was substituted in the first experiment.)

When this experiment was run on a Pentium IV
system, instead of the Pentium III-based primary
experimental platform, the results changed signifi-
cantly for splay trees. In particular, the ordering
from fastest to slowest changed to parent pointers,
linked list, threads, right threads, and plain. We
speculate that the Pentium IV has extra-large penal-
ties on branches, favoring parent pointer and linked
list representations which require fewer branches than
threaded or right-threaded nodes.

In the normal case, within each node representa-
tion, speed is consistently, from fastest to slowest, in
the order of unbalanced trees, red-black trees, AVL
trees, and splay trees. This matches our hypotheses
for performance of insertion in random order (see 3).
Red-black trees with parent pointers are an unex-

8

plained anomaly.

5.2.2 Attack Data Set

In the attack case, AVL trees perform better than
red-black trees because the AVL balancing rule does a
better job of keeping the tree height to a minimum at
the important point, the point of the next insertion:
the maximum path length in the AVL tree, averaged
over all operations, is 14.6, whereas in the red-black
tree it is 21.5. On the other hand, the average internal
path length across all the operations varies by less
than 1% between AVL and red-black trees.

Splay trees fare poorly for the attack data set,
which is somewhat surprising given that sequential
accesses in splay trees perform in linear time. Exam-
ination of the data set revealed that although peer
IP addresses appear in sorted order, the subsequent
randomness in request spacing is sufficient to create
a great deal of disorder: over the 285,088 requested
handled by the data set, there is an average distance
of 22,652 operations between requests with sequential
IP addresses.

5.3 Cross-Reference Collator

The two previous experiments focused on problems
that were solved especially well with the use of BST-
based data structures. The third experiment is some-
what different in that its problem can be better solved
with other techniques; in particular, by use of a hash
table during accumulation of data followed by a fi-
nal sorting pass. It remains interesting for at least
one reason: the C++98 standard library [23] con-
tains “set” and “map” template classes based on bal-
anced trees,5 but none based on hashes. For that
reason, C++ programmers interested in convenience
and portability may select one of these standard tem-
plates where a hash-based implementation would be
more appropriate.

Cross-references of identifier usage can be useful in
software development, especially when source code
used as a reference is available as hard copy only.
One way to construct such a tool is to divide it into
parts connected through a Unix pipeline, like so:

find . | extract-ids | sort | merge-ids

where extract-ids reads a list of files from its input,
extracts their interesting identifiers, and writes them
along with filename and line number to its output,

5Implementations based on skip lists, etc., are also possible.
The GNU/HP/SGI implementation uses red-black trees with
parent pointers.

merge-ids collects adjacent lines for identical identi-
fiers into a more readable format, and find and sort
are the standard Unix utilities. This experiment ex-
amines the performance of a utility to take the place
of the final two programs, implemented using libavl.

This program, here called a “cross-reference col-
lator,” inserts a set of identifiers into a single tree
as they are read. In addition, each identifier has its
own tree that contains names of the files in which
the identifier appears. Furthermore, each file has a
set of line numbers attached to it corresponding to
the lines in the file on which the identifier appears.
After all of the input has been read, the collator tra-
verses the data structure to produce a fully sorted
cross-reference listing.

The input used for testing the collator was con-
tents of directory include/linux within the source
code for Linux 2.4.18. When extract-id is used,
this directory contains 118,639 interesting identifiers,
or 47,952 dropping duplicates, in 841 files. With this
test set, the collator utility creates a total of 47,953
trees (one for each unique identifier plus one to orga-
nize the identifiers) and makes 237,278 calls to probe
(two for each identifier). It also calls t next 159,815
times while composing output.

Table 6 shows the times, in seconds, for 5 runs
of the cross-reference collator over the test set for
each of libavl’s table implementations. The test set
labeled “normal” is the normal case where the colla-
tor’s input is presented in the order it is produced by
extract-ids. Sets “sorted” and “shuffled” present
the artificial cases where its input is arranged in order
by identifier or in random order, respectively, before-
hand. Splay trees are tested, but their amortized per-
formance guarantees do not meet the per-operation
requirements of the C++98 standard. Unbalanced
BSTs also do not meet these requirements.

5.3.1 Normal Data Set

For the normal case, splay trees are consistent win-
ners, taking advantage of locality, resulting from the
tendency of identifiers to recur within a few lines
of first mention. Red-black trees are consistently
slightly faster than AVL trees, reflecting the more re-
laxed red-black balancing rule that results in less re-
balancing. Finally, the times for unbalanced trees are
only at most 11% greater than for AVL trees, demon-
strating that the natural identifier ordering tends to-
ward randomness.

5.3.2 Sorted Data Set

As usual, splay trees are the big winners in the sorted
case, beating all other implementations by 28% or

9

test set representation BST AVL RB splay
normal plain 5.22 4.62 4.49 4.03

parents 4.97 4.47 4.33 4.00
threads 5.00 4.63 4.51 4.03
right threads 5.12 4.66 4.57 4.06
linked list 5.05 4.79 4.59 4.03

sorted plain * 4.21 4.90 2.91
parents * 4.04 4.70 2.90
threads * 4.25 5.02 2.89
right threads * 4.24 5.02 2.87
linked list * 4.31 4.98 2.83

shuffled plain 5.98 5.80 5.69 6.54
parents 5.80 5.68 5.51 6.61
threads 5.80 5.77 5.65 6.56
right threads 5.89 5.80 5.71 6.63
linked list 5.88 6.06 5.84 6.64

Table 6: Times, in seconds, for 5 runs of the unsorted
and sorted versions of the cross-reference collator for
each kind of tree. *Pathological case not measured.

more. Comparing AVL and red-black tree results, the
AVL tree’s stricter balancing rule pays off, producing
a tree of identifiers with maximum path length of 14
(averaged over all insertions) instead of the red-black
tree’s 25, and yielding the 13% to 16% edge of AVL
trees in that category.

5.3.3 Shuffled Test Set

The results for insertion in random order again reflect
the disadvantage of splay trees for random access and
the advantage of the more relaxed red-black tree bal-
ancing rule. More curious is that every time in the
“shuffled” test set is worse, by 13% to 21%, than the
corresponding time in the normal set. Normally one
would expect that the shuffled times should be about
the same or better than the times for normal inser-
tion order, because random order is ideal for BST
insertion.

The processor cache, along with the structure of
the input data, turns out to be the culprit. When any
given identifier is used once in a source file, it tends
to be used again within a few lines of code. This nat-
ural clustering yields a good hit rate in the processor
cache. Shuffling the input data destroys clustering
and reduces the effect of the processor cache for large
input data sets. To test this hypothesis, the experi-
ment was rerun using only the first 10,000 identifiers
from the test set. The results, shown in Table 7, con-
firm the idea: the edge of the normal input data over
the shuffled input data is reduced to at most 7% for
non-splay variants. Further investigation using the

test set representation BST AVL RB splay
normal plain 3.24 3.09 3.01 2.80

parents 3.10 2.94 2.86 2.81
threads 3.12 3.04 2.98 2.82
right threads 3.21 3.06 3.02 2.85
linked list 3.19 3.21 3.08 2.87

shuffled plain 3.23 3.28 3.24 3.51
parents 3.13 3.12 3.05 3.55
threads 3.15 3.20 3.15 3.55
right threads 3.22 3.22 3.19 3.60
linked list 3.24 3.43 3.32 3.64

Table 7: Times, in seconds, for 50 runs of a reduced
version of the cross-reference collator for each kind of
tree designed to fit within the processor cache.

P6 performance counters [24] directly confirms that
reducing the test set size reduces additional cache
misses in the shuffled case from 248% to 33%.

6 Discussion

The preceding sections examined three experiments
with binary search tree-based data structures and dis-
cussed the results for each one in isolation. This sec-
tion attempts to extend these individual results into
broader conclusions about the performance of BST-
based data structures in a more general context.

Each of the experiments involves three different
kinds of test sets: those drawn from real-world sit-
uations, and variations that yield best- and worst-
case performance in unbalanced BSTs. (For the peer
cache experiment, the normal case is close to the best
case.) The experimental results allow straightforward
guidelines for effective choice of data structure to be
drawn up, described in detail in the following sec-
tions.

6.1 Choice of Data Structure

In the best case for unbalanced BSTs, that is, inser-
tion of items in random order, unbalanced trees are
the best choice because of their low time and space
overhead. If items are normally inserted in random
order but include occasional runs in sorted order,
then red-black trees are preferred to AVL trees be-
cause their more relaxed balancing rule does less work
attempting to balance already random data. Splay
trees are undesirable, because of the cost of splaying
on every access.

In the worst case for unbalanced BSTs, that is, in-
sertion of items in sorted order, splay trees are the

10

best choice as long as subsequent accesses tend to be
somewhat sequential (as in the VMA experiment in
section 5.1) or clustered (as in the cross-reference ex-
periment in section 5.3). Splay trees should not, how-
ever, be used if bounded performance guarantees are
required. Otherwise, AVL trees are a better choice
because they tend to keep the maximum path length
below that for red-black trees, although the internal
path length for AVL and red-black trees is compara-
ble. Unbalanced BSTs should not be considered.

Real-world situations fall somewhere between the
two extremes: in two of our experiments red-black
performance was better than AVL performance and
in the other one it was the reverse; in one, splay trees
were better than either. The choice of data structure
can then be made based on which extreme is thought
more likely or for which performance is more impor-
tant, or based on actual tests.

6.2 Choice of Node Representation

The results also aid the choice of BST representation.
BST representations with parent pointers had the
best performance in all three of our experiments, fol-
lowed closely by threaded representations. Threads
use less memory than a parent pointer and are there-
fore preferable when space is at a premium.

A plain BST representation, without parent point-
ers or threads, saves time taken updating these ad-
ditional fields, but the advantage is more than made
up by costs incurred when traversal is combined with
modifications. A plain representation also seems to
preclude efficient implementation of t delete.

The linked list node representation was a clear win-
ner for three out of four data sets for the VMA exper-
iment, which made heavy use of traversal operations
t next and t prev, but its use exacted a significant
penalty for the peer cache experiment. Its high mem-
ory cost, two pointer fields per nodes, means that it
should only be used when traversal is common.

Right threads seem rarely preferable, especially
since there seems no efficient way to implement
t delete. (Of course, t prev is also slow in right-
threaded trees.) Right threads performed poorly in
all three experiments.

7 Related Work

Few comparisons of BST-based data structures ex-
ist in the literature, and none make use of real-world
test sets or include red-black or splay trees. In 1976,
Karlton et al. [1] experimentally examined the per-
formance of HB[k] trees, a class of height-balanced
binary trees for which AVL trees form the special

case k = 1, but did not compare HB[k] trees to other
forms of balanced tree. Baer and Schwab [2] em-
pirically compared height-balanced, weight-balanced,
and periodically totally restructured trees, using syn-
thetic test sets, and concluded that AVL trees offer
the best performance. Cannady [25] made theoret-
ical comparisons height-balanced, bounded-balance,
and weight-balanced trees. In 1980, Wright [3] ana-
lyzed the performance of several types of trees using
a variety of synthetic test sets.

One FreeBSD developer has reported that switch-
ing from doubly linked lists to splay trees increased
the overall speed of a web server execution by
23% [26].

8 Conclusion

In this paper, we empirically compared the perfor-
mance of 20 variants on BSTs in three different real-
world scenarios, and demonstrated that choice of data
structure can significantly impact performance. Our
results show that BST data structures and node rep-
resentations should be chosen based on expected pat-
terns in the input and the mix of operations to be
performed.

We found that in selecting data structures, unbal-
anced BSTs are best when randomly ordered input
can be relied upon; if random ordering is the norm
but occasional runs of sorted order are expected, then
red-black trees should be chosen. On the other hand,
if insertions often occur in a sorted order, AVL trees
excel when later accesses tend to be random, and
splay trees perform best when later accesses are se-
quential or clustered.

For node representation, we found that parent
pointers are generally fastest, so they should be pre-
ferred as long as the cost of an additional pointer field
per node is not important. If space is at a premium,
threaded representations conserve memory and lag
only slightly behind parent pointers in speed. A plain
BST has fewer fields to update, but combining traver-
sal and modification requires extra searches. Main-
tain a linked list of in-order nodes is a good choice
when traversal is very common, but exacts a high
memory cost. Finally, right-threaded representations
fared poorly in all of our experiments.

We also showed that implementing an routine for
deleting a node referenced by a traverser can yield
significant performance improvement for some work-
loads. Based on our results future versions of libavl
are likely to add support for such an operation, as
well as splay trees.

11

Acknowledgments

The author thanks advisor Mendel Rosenblum and
colleague Tal Garfinkel. The author was supported
by a Stanford Graduate Fellowship during the course
of this work.

References

[1] P. L. Karlton, S. H. Fuller, R. E. Scroggs, and
E. B. Kaehler, “Performance of height-balanced
trees,” Communications of the ACM, vol. 19,
no. 1, pp. 23–28, 1976.

[2] J.-L. Baer and B. Schwab, “A comparison of
tree-balancing algorithms,” Communications of
the ACM, vol. 20, no. 5, pp. 322–330, 1977.

[3] W. E. Wright, “An empirical evaluation of al-
gorithms for dynamically maintaining binary
search trees,” in Proceedings of the ACM 1980
annual conference, pp. 505–515, 1980.

[4] D. E. Knuth, Sorting and Searching, vol. 3 of The
Art of Computer Programming, section 6.2.2,
pp. 430–31. Reading, Massachusetts: Addison-
Wesley, second ed., 1997.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, section 13, p. 244.
MIT Press, 1990.

[6] R. Sedgewick, Algorithms in C, Parts 1–4, sec-
tion 12.6, pp. 508–511. Addison-Wesley, 3rd ed.,
1998.

[7] G. M. Adel’son-Vel’skĭı and E. M. Landis, “An
algorithm for the organization of information,”
Soviet Mathematics Doklady, vol. 3, pp. 1259–
1262, 1962.

[8] D. E. Knuth, Sorting and Searching, vol. 3
of The Art of Computer Programming, section
6.2.3, p. 460. Reading, Massachusetts: Addison-
Wesley, second ed., 1997.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, section 14.1, p. 264.
MIT Press, 1990.

[10] R. Sedgewick, Algorithms in C, Parts 1–4, sec-
tion 13.4, p. 556. Addison-Wesley, 3rd ed., 1998.

[11] D. D. Sleator and R. E. Tarjan, “Self-adjusting
binary search trees,” Journal of the ACM,
vol. 32, pp. 652–686, July 1985.

[12] R. E. Tarjan, “Sequential access in splay trees
takes linear time,” Combinatorica, vol. 5, no. 4,
pp. 367–378, 1985.

[13] D. E. Knuth, Fundamental Algorithms, vol. 1
of The Art of Computer Programming, section
2.3.1, pp. 322–327. Reading, Massachusetts:
Addison-Wesley, third ed., 1997.

[14] B. Pfaff, An Introduction to Binary Search Trees
and Balanced Trees, vol. 1 of libavl Binary
Search Tree Library. Free Software Foundation,
2.0.1 ed., 2002.

[15] M. K. McKusick, K. Bostic, M. J. Karels, and
J. S. Quarterman, The design and implemen-
tation of the 4.4BSD operating system, ch. 5,
pp. 117–190. Addison Wesley Longman Publish-
ing Co., Inc., 1996.

[16] H. Custer, ed., Inside Windows NT, p. 200. Mi-
crosoft Press, 1993.

[17] T. H. Cormen, C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms, section 15.3,
pp. 290–295. MIT Press, 1990.

[18] “Mozilla 1.0.” Software, June 2002.

[19] VMware, Inc., “VMware GSX Server 2.0.1.”
Software, 2002.

[20] J. Postel, “RFC 791: Internet Protocol,” Sept.
1981. Status: STANDARD.

[21] A. V. Savochkin, “net/ipv4/inetpeer.c.” Linux
2.4.18 kernel source, 2001.

[22] T. H. Cormen, C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms, section
12.3.3, pp. 229–232. MIT Press, 1990.

[23] International Organization for Standardization,
ISO/IEC 14882:1998: Programming languages
— C++. Geneva, Switzerland: International
Organization for Standardization, Sept. 1998.

[24] Intel Corporation, Intel Architecture Software
Developer?s Manual Volume 3: System Pro-
gramming, 2002.

[25] J. M. Cannady, “Balancing methods for binary
search trees,” in Proceedings of the 16th an-
nual conference on Southeast regional confer-
ence, pp. 181–186, ACM Press, 1978.

[26] A. Cox, “fa.m7rv3cv.klm8jr@ifi.uio.no.” Usenet,
May 2002.

12

	Introduction
	BST Variants
	Data Structure
	Node Representation

	Performance Hypotheses
	Data Structure
	Node Representation

	Experimental Platform
	Experiments
	Virtual Memory Areas
	Real-World Data Sets
	Random Data Set
	Optimization

	Internet Peer Cache
	Normal Data Set
	Attack Data Set

	Cross-Reference Collator
	Normal Data Set
	Sorted Data Set
	Shuffled Test Set

	Discussion
	Choice of Data Structure
	Choice of Node Representation

	Related Work
	Conclusion

