
Performance Analysis of BSTs in System Software

[Extended Abstract]

Ben Pfaff
Stanford University Department of Computer Science

blp@cs.stanford.edu

Categories and Subject Descriptors: E.1 [Data Struc-
tures]: trees; E.2 [Data Storage Representations]: linked
representations; C.4 [Performance of Systems]: performance
attributes

General Terms: algorithms, performance

Keywords: binary search tree, BST, threaded tree, AVL
tree, red-black tree, splay tree

1. INTRODUCTION
OS kernels often use binary search tree (BST) based data

structures. Choosing the right tree and node representation
can significantly impact the performance of code that uses
these data structures. Surprisingly, there has been little em-
pirical study of the relationship between the algorithms used
for managing BST-based data structures and performance
characteristics in real systems [6, 2, 10]. This extended ab-
stract outlines performance results for 20 total BST vari-
ants: four data structure variants each with five different
node representations.

2. DATA STRUCTURES
In an ordinary BST, insertion of data items in a patholog-

ical order, such as sorted order, causes performance to drop
from O(lg n) to O(n) per operation in a n-node tree [7]. One
solution is a balanced tree such as an AVL tree or red-black
tree, which limit the height of an n-node tree to no more than
1.4405 lg(n + 2)− 0.3277 and 2 lg(n + 1), respectively [1, 5].
Another popular solution is a splay tree, which rotates or
“splays” each node to the root at time of access [9].

A minimal BST node contains a data item and left and
right child pointers, but efficient in-order traversal in such
an ordinary BST requires maintaining a stack, which must
usually be rebuilt if the tree is modified during traversal.
One way to eliminate the stack is to add a parent pointer
to the node, yielding a tree with parent pointers. Adding
predecessor and successor pointers to each node, yielding
a linked list tree, is another solution. Alternatively, we can
use right-child pointers that would otherwise be null to store
a pointer to the node’s successor, yielding a right-threaded
tree. If we also use left-child pointers that would otherwise
be null to store predecessor nodes, the result is simply a
threaded tree.

Copyright is held by the author/owner.
SIGMETRICS/Performance’04,June 12–16, 2004, New York, NY, USA.
ACM 1-58113-664-1/04/0006.

3. EXPERIMENTS
We ran three experiments to test the 20 variations on

binary search trees described in the previous section.

3.1 VMAs
Our first experiment measures the speed of managing a set

of virtual memory areas (VMAs), which represent sections
of memory in a Unix process. A normal process has at
least three VMAs, for its code, data, and stack segments,
but processes can create an arbitrary number with the mmap

system call. Because VMAs vary in size from 4 kB to over 1
GB, hash tables are not an appropriate representation. Most
Unix-like OSes use a BST variant to keep track of VMAs,
as does Windows NT for its VMA equivalents [4].

We recorded VMA activity in three real programs: Mozilla
1.0, VMware GSX Server 2.0.1, and squid running under
User-Mode Linux 2.4.18.48. The three test sets display very
different VMA behavior, but they all display strong locality.
We used these as test sets in a simulation of VMA activity.
We ran the simulation for each test set with each of our 20
BST variants.

Splay trees were the big winner for all three data sets,
bettering the best of the competition by 23% to 40% each
time, due to the splay tree’s ability to optimize the tree
for locality of reference. AVL trees were consistently faster
than red-black trees, by up to 20%. AVL trees also made
up to 32% fewer comparisons, suggesting that the stricter
AVL balancing rule is responsible. However, the average
internal path length for the red-black trees was only about
3% longer than for the AVL trees. We conclude that AVL
and red-black trees globally balanced the trees about as well,
but the AVL balancing rule leads to better balancing in the
important places for test sets like these with strong locality.

Ordinary BSTs were the slowest node representation in all
cases but two. Within the balanced tree implementations,
plain nodes were slowest, dragged down by rebuilding stacks
after tree modifications, and parent pointers were fastest,
beating out threaded representations because of their extra
overhead in distinguishing child pointers from predecessors
or successors.

3.2 Internet Peer Cache
RFC 791 [8] requires that each IP packet sent by an inter-

net host be stamped with a 16-bit identification field that
“must be unique for that source-destination pair and proto-
col for the time the datagram will be active in the internet
system.” The Linux kernel ensures this by maintaining an
AVL tree of per-host counters, incrementing a host’s counter



once for every packet transmitted to it. A hash table would
be faster in the average case, but an attacker could cause
hash collisions that would degrade its performance. Univer-
sal hashing [3] could make such attacks more difficult, but
they are impossible in a balanced tree.

The peer AVL tree is used as a second-level cache. The
first-level cache is the route cache, each entry in which con-
tains a pointer to the corresponding peer AVL tree node.
When an entry in the route cache is dropped, its correspond-
ing node in the peer AVL tree remains for some amount of
time before it is dropped. On the other hand, if a fresh route
cache entry is added for the IP address during that time, the
corresponding peer AVL tree node will be retained.

We wrote a simulation that attempts to reproduce heuris-
tically the most important features of the route cache. We
experimented with its behaviors in two scenarios, trying all
20 BST variants in each. The first scenario was a web
server under “normal” load, in which hosts with random
IP addresses make on average 9 requests at intervals of 30
s on average. For this data set, typically parent pointer
and threaded nodes were fastest, reflecting that these types
of nodes allow for O(1) deletion. Within node representa-
tions, speed was consistently, from fastest to slowest, or-
dered as unbalanced trees, red-black trees, AVL trees, and
splay trees, reflecting the extra work that each kind of tree
performed trying to balance already random data.

The second scenario was an “attack” in which consecu-
tively numbered IP addresses make a new request every 10
ms. For this case, AVL trees performed better than red-
black trees because the stricter AVL balancing rule does a
better job of keeping the tree height at a minimum at the
important point, the point of the next insertion.

3.3 Cross-Reference Collator
The first two experiments dealt with problems that were

best solved with BSTs. However, in practice problems that
are better solved with hash tables are sometimes solved with
BSTs anyhow. For example, the C++98 standard library
provides (typically) BST-based “set” and “map” template
classes, but no hash-based template classes, encouraging
C++ programmers to use the wrong tool.

With this in mind, we wrote a “cross-reference collator”
tool that sorts and merges a set of identifiers extracted
from program source code using BSTs as an index. We
ran the tool with all 20 BST variants on the set of files in
include/linux from Linux 2.4.18. To test worst- and best-
case orders, we also ran it on sorted and randomly shuffled
collections of identifiers from the same test set.

For the normal case, splay trees were consistent winners,
taking advantage of locality, resulting from the tendency
of identifiers to recur within a few lines of first mention.
Red-black trees are consistently slightly faster than AVL
trees, reflecting the more relaxed red-black balancing rule
that results in less rebalancing. Finally, the times for unbal-
anced trees are only at most 11% greater than for AVL trees,
demonstrating that the natural identifier ordering tends to-
ward randomness.

Splay trees were also the big winners for the sorted case,
again because of their advantages for locality. AVL trees
performed better than red-black trees because the stricter
balancing rule maintains a shorter maximum path length.

For the shuffled case, trees that did less extra work were
again the winners. However, the shuffled results were consis-

tently slower than the corresponding “normal” results. We
found that lack of locality in the shuffled results, combined
with a processor cache of limited size, was the culprit.

4. CONCLUSION
This extended abstract summarized our empirical com-

parison of the performance of 20 BST variants in three dif-
ferent real-world scenarios, and demonstrated that choice of
data structure can significantly impact performance. Our
results show that BST data structures and node represen-
tations should be chosen based on expected patterns in the
input and the mix of operations to be performed.

We found that in selecting data structures, unbalanced
BSTs are best when randomly ordered input can be relied
upon; if random ordering is the norm but occasional runs
of sorted order are expected, then red-black trees should be
chosen. On the other hand, if insertions often occur in a
sorted order, AVL trees excel when later accesses tend to be
random, and splay trees perform best when later accesses
are sequential or clustered.

For node representation, we found that parent pointers
are generally fastest, so they should be preferred as long as
the cost of an additional pointer field per node is not impor-
tant. If space is at a premium, threaded representations con-
serve memory and lag only slightly behind parent pointers
in speed. A plain BST has fewer fields to update, but com-
bining traversal and modification requires extra searches.
Maintain a linked list of in-order nodes is a good choice
when traversal is very common, but exacts a high memory
cost. Finally, right-threaded representations fared poorly in
all of our experiments.

5. ACKNOWLEDGEMENTS
A Stanford Graduate Fellowship supported this work.

6. FULL PAPER
Visit http://benpfaff.org/papers for the full paper sum-

marized by this extended abstract.

7. REFERENCES
[1] G. M. Adel’son-Vel’skĭı and E. M. Landis. An algorithm for the

organization of information. Soviet Mathematics Doklady,
3:1259–1262, 1962.

[2] J.-L. Baer and B. Schwab. A comparison of tree-balancing
algorithms. Communications of the ACM, 20(5):322–330, 1977.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms, section 12.3.3, pages 229–232. MIT Press, 1990.

[4] H. Custer, editor. Inside Windows NT, page 200. Microsoft
Press, 1993.

[5] L. J. Guibas and R. Sedgewick. A dichromatic framework for
balanced trees. In Proceedings of the Nineteenth Annual
Symposium on Foundations of Computer Science, pages 8–21,
1978.

[6] P. L. Karlton, S. H. Fuller, R. E. Scroggs, and E. B. Kaehler.
Performance of height-balanced trees. Communications of the
ACM, 19(1):23–28, 1976.

[7] D. E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming, section 6.2.2, pages 430–31.
Addison-Wesley, Reading, Massachusetts, second edition, 1997.

[8] J. Postel. RFC 791: Internet Protocol, Sept. 1981. Status:
STANDARD.

[9] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, July 1985.

[10] W. E. Wright. An empirical evaluation of algorithms for
dynamically maintaining binary search trees. In Proceedings of
the ACM 1980 annual conference, pages 505–515, 1980.


