
Bringing Platform Harmony to VMware NSX

Justin Pettit Ben Pfaff Joe Stringer

jpettit@vmware.com bpfaff@vmware.com stringerjoe@vmware.com

Cheng-Chun Tu Brenden Blanco Alex Tessmer

tuc@vmware.com bblanco@vmware.com atessmer@vmware.com

Abstract

VMware NSX virtualizes network functionality in a manner anal-
ogous to how hypervisors virtualize compute resources. To do this,
NSX must faithfully recreate virtual versions of network compo-
nents, such as switches, routers, and firewalls. As this functionality
becomes commoditized, NSX must move “up the stack” to provide
more advanced features, such as load-balancers, IDS/IPS (intrusion
detection and prevention systems), and DPI (deep packet inspec-
tion) for classification.

NSX is designed to work in all types of deployments—even
those without any other VMware software. It integrates with ESXi,
Linux KVM, and Hyper-V hypervisors; it is even being made to
work on systems without a hypervisor, such as containers and third-
party clouds. Each of these platforms has its own native forwarding
plane. For the best user experience, all of the forwarding planes
should provide the same behavior, but the disparate implemen-
tations make this difficult in practice. As network functions be-
come more complex and as NSX supports more forwarding planes,
both duplication of effort and undesirable diversity of behavior in-
creases.

We propose a new approach to building advanced network func-
tions in NSX. Under this approach, identical code runs on all of
NSX’s supported platforms. Applications will run at or near native
performance, but with better security and identical cross-platform
behavior. We demonstrate this by writing a single application to
provide DPI functionality that runs in the fast paths of each of
NSX’s primary platforms: ESXi, Linux, and Edge gateway appli-
ance. We evaluate the performance and correctness of our imple-
mentation on the three platforms.

1. Introduction

Compute virtualization simplified the deployment of machines in
data centers by disaggregating the operating system from the un-
derlying hardware. Deploying a new system no longer required req-
uisitioning hardware and getting administrators to physically wire
it up. The weeks to obtain and deploy a physical machine were re-
duced to only a few minutes to deploy a virtual machine.

However, virtual machines (VMs) still relied on a physical net-
work. Each virtual machine was given network access via a phys-
ical port on its hypervisor, though perhaps limited to a VLAN or
restricted in various ways. Thus, a hypervisor’s physical location in
the network limited the connectivity of all of its VMs. Conversely,
any VM’s mobility was limited to hypervisors connected to the net-
work segment for its IP address. This also complicated the integra-
tion of higher level services, such as load-balancing and security,
since traffic needed to be routed through the necessary appliances.

Network virtualization provided by VMware NSX improves
this by separating the logical view of the network from the phys-

ical. To accomplish this, the network services must be faithfully
recreated, usually in the underlying hypervisor. To separate logi-
cal and physical addresses, traffic between VMs is encapsulated in
tunnels for transmission between transport nodes, that is, physical
machines that are part of an NSX network.

NSX is designed to be hypervisor-agnostic. Supported plat-
forms includes ESXi, KVM on Linux, Hyper-V on Windows,
Linux and Windows VMs in third-party clouds, containers hosted
on ESXi, plus a custom-built appliance, called Edge, that allows
physical machines to be integrated into an NSX logical network.
Development is underway to allow NSX to work with container-
ized workloads and third-party clouds for which a hypervisor is
either not present or inaccessible.

NSX uses the native forwarding plane of each transport node:
on ESXi, the NSX Virtual Switch; on Linux and Hyper-V, Open
vSwitch; and on the Edge appliance, the Edge virtual switch. These
forwarding planes were independently designed and implemented,
so each new NSX feature must be implemented at least three
times. To provide a seamless user experience, developers attempt
to implement identical behavior each time. Unfortunately, issues
slip through, because developers on each platform make slightly
different assumptions. In addition, behavior naturally differs in
cases where NSX relies on platforms’ native functionality, e.g. one
cannot expect Linux and Windows built-in stateful firewalls to have
exactly the same behavior in corner cases.

Sharing code among platforms is a natural way to ensure iden-
tical behavior. All of these systems are written in C, so a common
C library is a straightforward approach, perhaps using wrappers to
expose a common interface to packet buffers and other concepts
whose details differ between platforms. Unfortunately, nontechni-
cal issues bar this approach. In particular, the Open vSwitch ker-
nel module on Linux adds special challenges. First, VMware does
not control its development—rather, VMware must seek the ap-
proval of the Linux networking maintainer to upstream changes,
and from distributions such as Red Hat to provide customer support
for such changes. Linux maintainers typically reject wrapper-based
approaches. Second, the Linux kernel module is licensed under the
GNU General Public License (GPL) [6], which adds legal compli-
cations to direct code sharing. For these reasons, using a common
C library is infeasible in practice.

This paper proposes an alternative way to share code among
NSX transport nodes, without abandoning the use of platforms’
native forwarding planes. Instead of sharing C code directly, we add
support to each platform’s native forwarding plane for BPF, a safe,
portable bytecode representation. Linux has supported BPF years
(see section 2.2); on the other platforms, we port an interpreter. In
this model, NSX developers implement a feature once, in C, and
compile it to BPF, which runs on all platforms in the same way.

123



On Linux this approach also sidesteps maintainer and distribution
control over development and licensing pitfalls (see section 2.1).

This paper provides the following contributions:

• We show that a single implementation of a high-level network
function can run on all of NSX’s supported platforms, which
reduces duplicated development and ensures identical cross-
platform behavior.

• We demonstrate that these new services can run at or near native
speeds and with better security.

• We show that these new network services can be implemented
without changing the underlying forwarding model of the native
networking stack.

The remainder of the paper is structured as follows. The fol-
lowing section provides further background on NSX platforms and
on BPF. Section 3 explains the approach we use to provide higher-
level services without modifying the underlying forwarding logic.
Section 4 evaluates our prototypes running on ESXi and Linux hy-
pervisors, as well as the Edge appliance. Section 5 discusses im-
plementing more complicated services using our proposed model.
Section 6 discusses related work, and we conclude in Section 7.

2. Background

This section provides background information to enable the reader
to better understand the design.

2.1 Platform Diversity

NSX supports a diverse and increasing array of platforms. Among
hypervisors, it already supports ESXi and KVM, Hyper-V is in
development, and Xen is often requested. Multiple versions of
each of these platforms must be supported. Regarding KVM on
Linux, for example, NSX supports Red Hat Enterprise Linux and
Ubuntu, each in multiple versions and with different kernels, and
new versions and additional distributions are under consideration.

NSX support for container and public clouds is also under de-
velopment. These environments require a shift from the existing
NSX operational model that relies on control over the hypervisor’s
switching behavior, because container environments do not neces-
sarily have a hypervisor and public cloud operators do not expose
the hypervisor switch to their customers. In these systems, NSX in-
tegrates with the container or VM operating system, such as Linux
or Windows, which can be quite different from running in a hyper-
visor.

This diversity of platforms is complicated by the fact that each
one is supposed to provide identical behavior and functionality un-
der NSX. As the network forwarding plane requires deep integra-
tion in the host, it was decided early on that NSX would not require
it to be replaced to run. At best, a custom forwarding plane would
require additional testing by the various platform maintainers. At
worst, the platform maintainer may refuse to allow its use for fear
of breaking all network functionality and possibly making the sys-
tem unstable.

Linux adds special nontechnical difficulty to the mix. VMware
directly controls the virtual switch on other platforms, meaning
both the source code and the platform itself. On Linux, as a major
contributor to Open vSwitch, VMware has substantial influence
over its design and implementation, and since Open vSwitch is
open source, VMware could “fork” it if it became necessary. The
Linux kernel module that Open vSwitch relies on is the real source
of issues. VMware is a major contributor to the kernel module, but
the upstream Linux kernel networking subsystem maintainer and
to some extent the larger community around it must approve of any
changes to it. This is often challenging and in several cases these
upstreams have refused new features or optimizations [10, 11].

Linux is of course open source itself and therefore VMware
could fork the module as well. In fact, the Open vSwitch source
already includes source code for the kernel module, which is mod-
ified to allow it to compile for multiple versions of Linux, to allow
users of older kernels to use Open vSwitch features that normally
would require them to upgrade their entire kernel. Thus, in a tech-
nical sense, VMware could easily provide new features by adding
them to a fork of the kernel module. But Linux vendors do not pro-
vide support to their customers who use unapproved kernel mod-
ules, and Red Hat in particular has an “upstream first” policy, that
is, Red Hat approves only kernel modules whose features have al-
ready been integrated into the upstream Linux kernel. In addition,
the GNU General Public license required of code in Linux ker-
nel modules would add legal challenges to sharing code between a
Linux kernel module and VMware proprietary software.

Platform compatibility issues arise even in platforms for which
VMware has control of the entire stack. Before the ESXi switch
team introduced the ability to upgrade the forwarding plane, NSX
was limited to the capabilities of each particular version of ESXi.
There had been great concern about changing the virtual switch,
since slight changes in behavior could impact assumptions of other
business units. For example, the ESXi virtual switch has particular
idiosyncratic teaming behavior that no other virtual switch can
exactly reproduce. A change to a different virtual switch would also
create additional QE work to retool all virtual switch QE processes
to the new switch.

As such, our proposal does not require changing the underlying
forwarding plane. Instead, it uses the native forwarding plane for
classification, which then directs matching packets to a safe run-
time for further high-level processing. While the forwarding plane
is different on each system, the use of a runtime can ensure identi-
cal behavior regardless of the platform.

2.2 BPF

We approached the idea of a portable packet processing library
through BPF, which is a runtime environment based on a virtual
machine concept (in the same sense as the Java virtual machine).
BPF has been used in networking for decades [9], primarily for fil-
tering network packets; in fact, BPF stands for “Berkeley Packet
Filter.” The commonly used tcpdump program, for example, ac-
tually compiles the user’s filter, e.g. host 192.168.1.1 or port
80, into a BPF program that selects only the desired packets, and
passes it to the kernel. The kernel then executes the program for
each packet it receives and copies only the desired packets to
userspace. This avoids the cost of copying packets that userspace
would discard.

Many operating systems, including BSD, Linux, and ESXi, sup-
port BPF for packet filtering. Despite this originally narrow pur-
pose, BPF is actually a general-purpose instruction set that sup-
ports arithmetic, logic, memory load and store, branching, function
calls, and other common constructs. In recent years, on Linux, this
led to adoption of BPF beyond packet filtering, as a general operat-
ing system extensibility mechanism. On Linux, BPF programs can
now filter system calls, monitor file I/O, analyze live performance,
and more. Beyond packet filtering, the most prominent BPF user is
probably Chrome, which uses BPF to filter its system calls as part
of a sandboxing mechanism [14].

To better support these newer use cases, Linux adds several
extensions to classic BPF [5]. These changes allow more compli-
cated programs to be built through the ability to call approved in-
kernel helper functions and access persistent data structures called
maps. Userspace programs can also access maps, which provides
userspace a convenient way to monitor and control BPF programs.

Until recently, BPF was usually implemented as a bytecode
interpreter. Most BPF programs were short, so the overhead of

124



interpretation was insignificant. As the use cases for BPF grew
and BPF programs grew longer and more complicated, overhead
increased. Thus, Linux added the ability to compile, or “JIT,” BPF
into native machine instructions. JIT-compiled BPF is reputed to
run almost as fast as native code, although published numbers are
rare; section 4 reports our performance measurements.

BPF programs do not necessarily come from trusted sources.
For instance, non-root processes may have permission to capture
network packets, and unprivileged processes may filter their own
system calls, as Chrome does. Thus, BPF must provide a “safe”
runtime environment, that is, it must prevent programs from read-
ing or writing data to which they are not entitled, ensure that pro-
grams terminate within a reasonable amount of time, and so on.
BPF implementations use a combination of static and dynamic
techniques for safety. The dynamic techniques are straightforward:
checking, for example, that function arguments are within their
supported ranges at runtime.

BPF static checking is more elaborate. It is implemented in
Linux by code known as the verifier, which evaluates every pos-
sible path of the program and tracks its behavior. It ensures that
instructions are valid, that jump instructions target valid addresses,
and so on. It restricts code to ensure termination, for example by
disallowing loops. The verifier also rejects programs that are too
large or too complex to verify.

The LLVM toolchain supports BPF as a target architecture, so
BPF programs can be written in C and other high-level languages.

These properties of BPF make it a good choice as a way to im-
plement a portable library for packet processing. Implementing ef-
ficient L7 features requires running in the packet processing “fast
path,” which is typically part of the kernel. The performance al-
lowed by JIT compilation and the improved security over native
code make BPF an excellent option for extending functionality in
the kernel. The next section discusses our larger design for incor-
porating BPF into cross-platform packet processing engines.

3. Design

For each of the three supported NSX switches, we designed and
built a BPF prototype implementation. Service insertion was mod-
eled as a “black box,” in which the forwarding plane had no un-
derstanding of the functionality provided by the service and only
limited information was transferred between them.

This approach simplified integration, since it allowed service
insertion to be treated as a simple “action” of the forwarding logic.
For packets that needed the service applied, an instance of the
appropriate BPF program received the packet and some metadata,
such as the logical ingress port. The BPF program returned a status
that indicated whether the packet should continue being processed
by the forwarding plane or dropped.

All of our designs served the same goals, but because of their
diverse platforms they were implemented quite differently. Figure 1
sketches the overall design of each implementation. We discuss the
details of each port in the following subsections.

3.1 Open vSwitch on Linux

As shown in Figure 1(a), the Open vSwitch forwarding plane con-
tains userspace and kernel components. The userspace component,
ovs-vswitchd, contains the forwarding and policy tables. The kernel
datapath module is a cache of recently seen flows and their asso-
ciated actions. Sending packets from kernel to userspace is quite
expensive, so ideally traffic hits the datapath cache and stays in the
kernel.

This implementation leverages the mature BPF implementation
already built into the Linux kernel. The bpf system call loads
a BPF program into the kernel. The kernel verifies the program,
JIT compiles it into native machine instructions, and attaches it to

the requested hook point. To prototype BPF for this platform, we
added BPF support to Open vSwitch, by adding a new action in the
datapath that invokes a BPF program and stores the return value in
an Open vSwitch “register,” which a later flow matches and actions
can use as input.

As discussed in Section 6, work is underway to reimplement
the entire datapath in BPF. A goal of that project is to port the
BPF runtime to all supported OVS platforms and run the same
datapath code. Assuming that project is successful, actions will be
implemented as BPF, so no additional work will be required for
OVS integration.

3.2 NSX Edge Appliance

Like Open vSwitch, the NSX Edge appliance runs on Linux. How-
ever, because Edge uses Intel’s DPDK [7] userspace network stack
instead of the built-in Linux stack, it cannot use the Linux kernel
BPF implementation. Instead, we used the RBPF library, an open
source BPF implementation written in the Rust programming lan-
guage [12]. RBPF includes an interpreter and JIT implementations
of BPF, along with a primitive verifier. We used the interpreter in
our testing. It allows the client to register helper functions, although
it does not yet have built-in helpers for maps.

The LLVM toolchain for compiling C to BPF generates object
files in the ELF format commonly used on Linux and other systems.
Rust includes an ELF object loader, so our Edge BPF implementa-
tion leverages this along with the BCC library for BPF support [4]
to dynamically load BPF programs at runtime.

As shown in Figure 1(b), the Edge design consists of DPDK as
a bottom layer, with a custom flow cache on top of it, with a port
of BSD pf, that is, the BSD kernel firewall, on top of that. BSD pf
passes ingress packets through several stages that progress from L2
to L3 to L4 processing and beyond. At each stage the packet may
be dropped, or continue, or be held. The Edge BPF implementation
inserts a hook after L2–L4 firewall processing.

3.3 NSX Virtual Switch on ESXi

The ESXi in-kernel virtual switch is responsible for forwarding
packets. For extensibility, it provides a number of hooks, called
IOChains, that allow functions to be introduced at runtime that are
called at various stages of packet processing. The NSX distributed
firewall, for example, uses these hooks to integrate into an ESXi
deployment.

The TCP/IP stack in the ESXi kernel contains a BPF interpreter,
but it only works with vmkernel network interfaces, that is, it is not
on the path of packets to VMs. Also, it is intended only for packet
filtering and lacks features required for general-purpose work. For
production use it might make sense to use a single engine for
both purposes, but for proof-of-concept purposes we introduced a
second BPF engine.

For simplicity, our BPF implementation on ESXi does not sup-
port loading a BPF object file directly into the kernel. Instead, we
use a utility to convert an object file into a C header file and then
statically compile that directly into the switch driver.

As shown in Figure 1(c), we hooked the BPF runtime into an
IOChain. For traffic coming into and out of a virtual interface, the
packets are passed to the attached advanced service.

4. Evaluation

We evaluated the performance and correctness of our prototype
using a BPF program that we designed as our test case. This test
case was run unmodified on each of the NSX supported platforms.
The following sections describe the test case itself, then our perfor-
mance and correctness tests and the results.

125



userspace

kernel

BPF Runtime

BPF Runtime
BPF Runtime

vSwitch

ovs-vswitchd

OVS Datapath

Flow Cache

DPDK Library

pf

IO
C

h
a
in

s

(a) Open vSwitch on Linux (b) Edge Appliance (c) ESXi

userspace

kernel

userspace

kernel

Figure 1: Service insertion was achieved by porting the BPF runtime to each of NSX’s supported platforms. (a) On Linux, the Open vSwitch forwarding plane
contains userspace and kernel components. We modified the OVS kernel datapath to call into the Linux kernel’s existing BPF stack. (b) The Edge appliance is
built with DPDK, which means all packet processing occurs in userspace. For the prototype, a custom-ported BPF runtime is called by the pf component just
after the L2-L4 firewall hook. (c) The ESXi forwarding plane executes entirely in the kernel. We attached the BPF runtime to an IOChain, which the vSwitch
provides as an extension mechanism.

4.1 Test Case

As a test case for for our prototype, we implemented in BPF a deep
packet inspection network function. Deep packet inspection, called
DPI for short, attempts to identify the protocols used in network
connections by examining the data transferred inside TCP and UDP
payloads. Identifying protocols via DPI is more computationally
intensive than by looking at TCP or UDP port numbers, but it is
also more accurate, especially as new protocols tend increasingly
to be layered on top of HTTP on port 80. DPI is commonly de-
ployed in enterprise networks [1] to allow different types of traffic
to be treated differently; for example, voice-over-IP traffic might
be routed to minimize latency, or social networking traffic might
be de-prioritized or dropped. An upcoming release of NSX will
include a DPI feature; our prototype is an independent implemen-
tation.

Our particular test case identifies the URL in an HTTP re-
quest, drops requests against domains that appear in a black-
list, and passes through other packets. The blacklist consisted of
yahoo.com, facebook.com, example.com, and youtube.com.
The non-blacklisted URLs were the home pages of vmware.com,
google.com, and slashdot.org.

Our DPI implementation is a proof of concept, that is con-
siderably simplified from what would be required in production.
A production-quality DPI implementation would reassemble TCP
packets to view the stream of data; our DPI prototype only ex-
amines the payload of individual packets in isolation. A produc-
tion DPI implementation would allow the protocols understood to
be dynamically configured at runtime; our DPI prototype supports
only extracting the domain from an HTTP request. We believe that
our experiments remain valuable, even with these caveats.

4.2 Correctness

A program that is fast but not correct has little value. Our correct-
ness test seeks to demonstrate that our BPF test case behaves the

same way on all of our platforms, by running it on each platform
and comparing the results.

Using the wget HTTP client, we retrieved a variety of URLs,
both on and off the blacklist, on each platform. We successfully
verified that fetching URLs on the blacklist timed out and that other
URLs could be retrieved retrieved normally.

4.3 Performance

To measure performance, we used a packet generator to send a
recorded collection of HTTP packets that contains a mix of pack-
ets to be be accepted and to be dropped, at maximum line rate for
a 10-Gbps link through each switch under test. We generated load
this way because it was easily reproducible and because generating
such a high load with regular web clients and servers would require
much more hardware. We report the results as the number of pack-
ets and bits per second successfully processed, which is the sum of
packets sent on an output port and packets dropped due to black-
listing. None of the implementations could keep up with the full
10-Gbps test load, so the reported results include only the packets
that were actually processed.

Performance-wise, our main goal is to demonstrate that BPF
performance is not significantly worse than conventional alterna-
tives. Thus, in addition to implementing DPI in BPF, we imple-
mented a “native” version of the same functionality in the Open
vSwitch kernel module for Linux. We measured both implementa-
tions on the same test data, using a single CPU core and a single
NIC queue. Table 1 reports these measurements, plus “baseline”
numbers without DPI running at all. The measurements show that
DPI via BPF, with JIT compilation, exacts a 5% penalty in terms of
packets per second and 6% in bits per second for our test set.

We were not able to take performance measurements for the
other platforms due to time and resource constraints. In our proto-
type, these platforms use a BPF interpreter rather than a compiler
(RBPF does include a JIT, but we were not able to use it in our

126



Measurement Mpps Gbps

No DPI 1.30 3.57
DPI, native implementation 1.28 3.53
DPI, BPF implementation (JIT) 1.21 3.31
DPI, BPF implementation (interpreted) 1.12 3.04

Table 1: Open vSwitch on Linux throughput without DPI and with two DPI
implementations, in millions of packets per second and gigabits per second.

testing). When we test DPI in BPF on Linux with JIT compilation
disabled, we see about 15% total penalty, as shown in Table 1. We
believe that it is reasonable to assume that these platforms would
see about the same relative penalty. Of course, for production use,
one would implement a JIT.

5. Discussion

Prototype Simplifications. The Linux prototype benefited from
having a full extended BPF implementation at its disposal in the
kernel. As noted in Section 3, we ported different BPF runtimes to
ESXi and the Edge appliance. These runtimes had various draw-
backs, such as license issues, missing features (e.g. lack of maps
that limited the complexity of the test case), incomplete or miss-
ing verifier, and no JIT compilation to native machine instructions.
For production, a single BPF runtime for the non-Linux platforms
could be maintained to address these issues.

Depending on the hardware and operating system, identical
packets could be presented differently to the BPF program. For
example, the platforms differ in their treatment of 802.1Q VLAN
headers: ESXi and Edge and old versions of Linux include the
VLAN header in packet data, but recent versions of Linux remove
it and instead provide it as metadata. We worked around this dif-
ference by making the BPF program tolerate both, which allows
a single program to work on old and new Linux as well as ESXi
and Edge, but it could also be addressed by using slightly different
programs on each platform.

BPF Limitations. BPF programs perform well and can be state-
ful, but restrictions on their complexity, imposed by the verifier on
each platform, could arise as an issue at some point. On Linux,
for example, the verifier restricts each BPF program to about 4,000
instructions—although multiple programs can be chained—and, to
limit the verifier’s own runtime, it also restricts program complex-
ity. This means that some sophisticated programs may not be ap-
propriate for BPF implementation; for example, implementing a
TCP-terminating protocol stack in BPF may be beyond the sensi-
ble limit. In such a case, a native library could be provided that
the BPF program accesses through helper functions. This is also a
reasonable way to give BPF programs access to functionality that
cannot reasonably be implemented without loops, such as regular
expression search.

Security Benefits. Datapath functionality implemented in BPF
may have a security advantage over functionality implemented di-
rectly in C, because the BPF verifier and runtime environment pre-
vents some kinds of security vulnerabilities such as buffer over-
flows. Exploitable vulnerabilities of the kind that BPF would pre-
vent have been found in virtual switches [13]. Figure 2 provides an
example of an unsafe program and the verifier refusing to load it.

Partner Services. VMware partners can extend NSX function-
ality. For example, the Palo Alto Networks firewall virtual appli-
ance can be used as an alternative to NSX’s built-in firewall [2].
Passing all traffic through a virtual appliance introduces unaccept-
able overhead, so NSX provides a mechanism to limit the packets
to divert, currently with limited flexibility. Replacing it by a BPF
program could allow third parties to safely, efficiently, and portably
enforce policies. For example, for a DPI service, the virtual appli-

>>> import bcc
>>> b = bcc.BPF(text="""
... BPF_HASH(foo, u64, u64);
... int kprobe__finish_task_switch(void *ctx) {
... u64 key = 0;
... u64 *val = foo.lookup(&key);
... (*val)++;
... return 0;
... }
... """)
bpf: Permission denied
0: (b7) r1 = 0
1: (7b) *(u64 *)(r10 -8) = r1
2: (18) r1 = 0xfb729d80
4: (bf) r2 = r10
5: (07) r2 += -8
6: (85) call 1
7: (79) r1 = *(u64 *)(r0 +0)
R0 invalid mem access ’map_value_or_null’

Figure 2: The BPF verifier blocks loading potentially dangerous code. In
this example, the static analyzer in the verifier denies loading the program
because val may be null. The program would have succeeded in loading
had the code checked that val was not null before attempting to dereference
it.

ance only needs to look at a particular flow until its protocol is
identified.

Other Uses of BPF. This paper concentrates on the application
of BPF for networking in NSX. Outside VMware, BPF is already
used in areas including tracing, monitoring, security, and hardware
offload [3]. As VMware introduces cross-platform products, these
use cases may also become relevant to these new products.

6. Related Work

Our proposal adds BPF to OVS as an extension to the existing
Linux kernel module. We are also exploring the more radical ap-
proach of replacing the entire OVS kernel module by a BPF pro-
gram (or collection of programs), as a way of solving the nontech-
nical kernel module maintenance issues described in Section 2.1.
Additionally, this could improve portability across OVS supported
platforms by using an identical datapath that only requires a ported
BPF runtime. Currently, a separate datapath is maintained for
each platform, and the features supported by each datapath varies
widely. An accompanying OSR article [15] describes this proposal
in more detail.

We propose a “black box” approach in which each service is in-
dividually responsible for parsing the packet and reassembling the
data. For production we may want to consider an approach closer to
that of SoftFlow [8], which shares more state between the base for-
warding plane and the services. Classification and reassembly are
expensive operations, which consume the majority of forwarding
plane CPU time in our experience, so reducing redundant compu-
tation could yield large benefits.

7. Conclusion

This paper discussed compatibility issues we’ve seen in maintain-
ing multiple different forwarding planes in NSX and a possible ap-
proach to providing higher level services using a portable runtime.
To demonstrate this, we ported the runtime to all supported NSX
platforms. We then wrote a program to do deep packet inspection
and ran it unmodified on each of the platforms. We were able to
demonstrate this as a viable approach to building advanced network
services with better portability, improved security, and similar per-
formance to native-built functionality.

127



References

[1] Deep packet inspection. https://en.wikipedia.org/wiki/
Deep_packet_inspection.

[2] VMware NSX with next-generation security from Palo Alto
Networks. https://www.paloaltonetworks.com/resources/
techbriefs/vmware-nsx-solution-brief.

[3] Use cases: IO Visor project. https://www.iovisor.org/
technology/use-cases, May 2017.

[4] Brenden Blanco, Brendan Gregg, Sasha Goldshtein, et al. BPF com-
piler collection (BCC). https://github.com/iovisor/bcc.

[5] Jonathan Corbet. Extending extended BPF. http://lwn.net/
Articles/603983/, 2014.

[6] Free Software Foundation. GNU general public license, version
2. https://www.gnu.org/licenses/old-licenses/gpl-2.0.
en.html, June 1991.

[7] Intel et al. DPDK: Data plane development kit. http://dpdk.org/.

[8] Ethan J Jackson, Melvin Walls, Aurojit Panda, Justin Pettit, Ben Pfaff,
Jarno Rajahalme, Teemu Koponen, and Scott Shenker. SoftFlow: A
middlebox architecture for Open vSwitch. In 2016 Usenix Annual

Technical Conference (USENIX ATC 16), pages 15–28. USENIX As-
sociation, 2016.

[9] Steven McCanne and Van Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In USENIX Winter, vol-
ume 46, 1993.

[10] David Miller. [GIT net-next] Open vSwitch. https://www.
spinics.net/lists/netdev/msg291696.html, August 2014.

[11] David Miller. net: Add STT support. https://www.spinics.net/
lists/netdev/msg314619.html, January 2015.

[12] Quentin Monnet et al. rbpf: Rust (user-space) virtual machine for
eBPF. https://github.com/qmonnet/rbpf.

[13] Ben Pfaff. CVE-2016-2074: MPLS buffer overflow vulnerabilities
in Open vSwitch. https://mail.openvswitch.org/pipermail/
ovs-announce/2016-March/000222.html, March 2016.

[14] Julien Tinnes. Introducing Chrome’s next-generation
Linux sandbox. http://blog.cr0.org/2012/09/
introducing-chromes-next-generation.html, September
2012.

[15] Cheng-Chun Tu, Joe Stringer, and Justin Pettit. Building an extensible
Open vSwitch datapath. In ACM SIGOPS Operating Systems Review,
2017.

128




